Factors that influence the pH of water through the application of linear regression models

Main Article Content

Sandra Lorena García
Alexandra Arguello
Richard Parra
Marcela Pincay Pilay

Abstract

In this article, some factors that could alter the pH of the Chimbo river water , which is located in the province of Bolivar in Ecuador are evaluated. The methodology to be used is of Multiple linear Regression, emphasizing the coefficient of determination R2 adjusted under the criteria of normality. Results for the different statistical models analyzed under free software "R" are exposed and contrasted and their information is discussed for the study of water quality based on its pH. Finally, it establishes that the variables that most influence the pH are the alkalinity, sulfate, and chloride present in the water and we show some predictions of the pH of the water on the basis of the best model obtained.

Downloads

Download data is not yet available.

Article Details

How to Cite
García, S. L., Arguello, A., Parra, R., & Pincay Pilay, M. (2019). Factors that influence the pH of water through the application of linear regression models. INNOVA Reseach Journal, 4(2), 59–71. https://doi.org/10.33890/innova.v4.n2.2019.909
Section
Anticles

References

Ansari, F., & Salahuddin. (2013). Statistical Analysis for the Presence of pH Content of Ground Water at Different Locations of Industrial area at Ghazipur in India. Global Journal of Science Frontier Research Mathematics and Decision Sciences, 13(9).

Aparicio, J., Martínez, M. M., & Morales, J. (2004). Modelos aplicados en R. Universidad Miguel Hernández.

APHA, AWWA & WPCF (1992). Métodos normalizados para el Análisis de Aguas Potables y Residuales. España: Díaz de Santos.

Chang, R. (2010). Química. México DF: McGraw-Hill.

Chang, R. G. (2013). Química (11a ed. edición. México; Madrid: MacGraw-Hill. ISBN 978-607-15-0928-4.

Del Valle Moreno, J., & Guerra Bustillo,W. (2012). La Multicolinealidad en modelos de Regresión Lineal Múltiple. Revista Ciencias Técnicas Agropecuarias, 80-83.

Kiely, G. (2000). Ingeniería Ambiental: Fundamentos, entornos, tecnologías y sistemas de gestión. España, Madrid.

Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied Linear Regression Models. McGraw-Hill Irwin.

Li, J., Liu, H., & Chen, J. (2018). Microplastics in freshwater systems: A reviewon occurrence, environmental effects, and methods for microplastics detection. Water Research, 362-374.

Mackenzie,D., & Cornwell, D. (2012). Introduction to Environmental Engineering (The Mcgraw-hill Series in Civil and Environmental Engineering) 5th Edition.

Montgomery, D., Peck, E., & Vining, G. (2006). Introducción al análisis de regresión lineal. México: Ed. Limussa.

Morris, G. L., & Fan, J. (1998). En Reservoir sedimentation handbook: Design and management of dams, reservoirs, and watershed for sustainable use. New York: McGraw-Hil.

R Code Team. (8 de septiembre de 2018). R: Un Lenguaje y Entorno para la Estadística Informática. En F. R. Estadística. Viena, Austria. Obtenido de http://www.rproject.org.

Stanley, E. H., & Doyle, M. W. (2002). Ageomorphic perspective. BioScience, 52(8), 693-701.

Stow, C. A., Borsuk, M. E., & Stanley, D. W. (2001). Long-term changes in watershed nutrient inputs and riverine exports in the Nesuse River. Water Research, 35(6), 1489-1499.

Varea, A., Suárez, L., Chávez, G., Cordero, M., Álvarez, N., & Espinosa, F. (1997). Biodiversidad, bioprospección y bioseguridad. Quito, Ecuador.

Zhang, Y., Xia, J., Shao, Q., & Zhai, X. (2013). Water quantity and quality simulation by improved SWAT in highly regulated Huai River Basin of China. Stochastic Environmental Research & Risk Assessment, 27(1).

Zlatanović, L., van der Hoek, J. P., & Vreeburg, J. H. (2017). An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Water Research, 761-772.

Zubala, T. (2009). Influence of dam reservoir on the water. Ecohydrology & Doyle, 9(2-4), 165-173.