Characterization Characterization and comparative analysis of castor oil biodiesel B10 relative to high quality commercialdiesel Biodiesel
Main Article Content
Abstract
This paper presents the physicochemical characterization of commercial diesel (Premium), and biodiesel based on castor oil, in proportion B10. A comparative analysis has been carried out regarding the characteristics obtained for both types of fuels and the results achieved are shown. The physicochemical properties treated are: Flash point, kinematic viscosity, basic sediments and water (BSW), corrosion to the copper sheet, sulfur and calculated cetane number. The properties of biodiesel are influenced by the physical characteristics of the fatty acid composition, such as the degree of unsaturation, the percentage of saturated fatty acids, monounsaturated fatty acids, and the polyunsaturated fatty acid. The properties of fuels are the key factors in determining the suitability of any alternative fuel. The results show that the B10 biodiesel characteristics are within the ranges stipulated by international regulations, in addition to significantly reducing polluting emissions. The characterization of fuels has been carried out based on the INEN 1489 standard and ASTM standards.
Downloads
Article Details
COPYRIGHT NOTICE
Authors who publish in the INNOVA Research Journal keeps copyright and guarantee the journal the right to be the first publication of the work under the Creative Commons License, Attribution-Non-Commercial 4.0 International (CC BY-NC 4.0). They can be copied, used, disseminated, transmitted and publicly exhibited, provided that: a) the authorship and original source of their publication (magazine, publisher, URL and DOI of the work) is cited; b) are not used for commercial purposes; c) the existence and specifications of this license of use are mentioned.
References
Aardahl C. (2002). Plasma-activated lean NOx catalysis for heavy-duty diesel emissions control. 8th Diesel Engine Emissions Reduction Conference, San Diego, Calif.
Alptekin, E., & Canakci, M. (2009). Characterization of the key fuel properties of methyl ester-diesel fuel blends. Fuel, 88(1), 75–80. https://doi.org/10.1016/j.fuel.2008.05.023.
Altin, R., Cetinkaya, S., & Yucesu, H. (2001). Potential of Using Vegetable Oil Fuels as Fuel for Diesel Engines. Energy Conversion and Management, 42, 529–538.
ASTM D6751. (n.d.). Standard Specification for Diesel Fuel Oils. ASTM, West Conshohocken, PA., (25).
ASTM D6751-15c. (2010). Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International, i, 1–11. https://doi.org/10.1520/D6751.
Barajas, C. L. (2004). Obtención de biodiésel a partir de la higuerilla (ricinus communis). 1er. Seminario Internacional de Biocombustibles. Bogotá: Universidad Nacional de Colombia Sede Bogotá.
Benavides, A., Benjumea, P., & Pashova, V. (2007). El biodiesel de aceite de higuerilla como combustible alternativo para motores diesel. Dyna, 74(153), 141–150. Retrieved from https://revistas.unal.edu.co/index.php/dyna/article/view/951.
Benavides, A. Y. (2004). Biodiésel de aceite de higuerilla. Una evaluación de su obtención y utilización. Trabajo dirigido de grado. Universidad Nacional de Colombia Sede Medellín.
Benjumea P.N. Agudelo J. R., R. L. A. (2009). Biodiesel: Producción, Calidad y Caracterización. 1ra Edición. Editorial Universidad de Antioquia. Medellín.
Ferella, F., Mazziotti Di Celso, G., De Michelis, I., Stanisci, V., & Vegli, F. (2010). Optimization of the transesterification reaction in biodiesel production. Fuel, 89(1), 36–42. https://doi.org/10.1016/j.fuel.2009.01.025.
Graboski, M. S., & Mc Cormick, R. L. (1998). Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science, 24(2), 125–164. https://doi.org/10.1016/S0360-1285(97)00034-8.
Kaplan, C., Arslan, R., & Sürmen, A. (2006). Performance characteristics of sunflower methyl esters as biodiesel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 28(8), 751–755. https://doi.org/10.1080/009083190523415.
Karavalakis G. Stournas S., K. D. (2010). Evaluation of the oxidation stability of diesel/biodiesel blends. Elsevier, Fuel, (89), 2483–2489.
Kates E., L. W. (2003). Motores Diésel y de gas de alta compresión. Editorial Reverté, S.A., 192.
Morales F.; Vázquez, J. C. H. J. S. P. (2012). Evaluación del aceite de higuerilla del istmo de Tehuantepec para la producción de biodiésel. Revista Latinoamericana de Química. Laboratorios Mixim, S.A. de C.V. México., 146.
Pehan, S., Jerman, M. S., Kegl, M., & Kegl, B. (2009). Biodiesel influence on tribology characteristics of a diesel engine. Fuel, 88(6), 970–979. https://doi.org/10.1016/j.fuel.2008.11.027.
Pérez M.; Perdomo, F. M. B. R. M. (2012). Diseño, síntesis y caracterización de un biodiésel combustible (2G) energéticamente óptimo a partir de mezclas de aceite de higuerilla y grasas ácidas. Centro de Física Aplicada Y Tecnología Avanzada. Universidad Nacional Autónoma de México. Querétaro-México.
Randazzo, M. L., & Sodré, J. R. (2011). Exhaust emissions from a diesel powered vehicle fuelled by soybean biodiesel blends (B3-B20) with ethanol as an additive (B20E2-B20E5). Fuel, 90(1), 98–103. https://doi.org/10.1016/j.fuel.2010.09.010.
Torres J.E. Jerman M.S., G. A. L. I. D. M. P. K. B. (2011). Physical and chemical properties of ethanol–diesel fuel blends. Elsevier, Fuel, 90, 795–802.
Van Gerpen, J. (2004). Biodiesel production technology. National Renewable Energy Laboratory, 1617.