INNOVA Research Journal, ISSN 2477-9024  
Polipropileno reforzado con fibra natural para fabricación de paneles  
internos de las puertas de un automóvil  
Polypropylene reinforced with natural fiber for the manufacture of interior  
panels of the doors of an automobile  
Manuel Fernando Gómez Berrezueta  
Universidad Internacional del Ecuador, Ecuador  
Paúl Wilfrido Méndez Torres  
Universidad Politécnica Salesiana, Ecuador  
Autor para correspondencia: fernanditogb@hotmail.com, magomezbe@uide.edu.ec,  
pwmt1979@gmail.com, pmendez@ups.edu.ec  
Fecha de recepción: 10 de Agosto de 2017 - Fecha de aceptación: 30 de Septiembre de 2017  
Resumen: Este artículo presenta las características técnicas, económicas y ambientales a  
considerar para fabricar una pieza de uso automotriz, que cumplan con las especificaciones. En  
este estudio, se discuten las propiedades y ventajas de los compuestos de fibra natural en paneles  
de puertas interiores. Las fibras naturales están reemplazando otros materiales en varias partes de  
automóviles debido a su peso ligero, bajo costo, bajo CO2, reciclabilidad. El objetivo de este  
proyecto es que los componentes cumplan los siguientes requisitos: simplicidad de construcción,  
facilidad de fabricación, colocación de materiales y bajo costo. El documento describe los efectos  
de varios parámetros materiales tales como tratamientos de la fibra, composición microestructural,  
técnicas de fabricación de compuestos, propiedades técnicas, cantidad de fibra a añadir establecida  
en% de peso, tipo de polímero, etc.; a varios niveles de contenido de fibra. Las pruebas de Charpy  
permitieron establecer la influencia de la fibra sobre la resiliencia del material compuesto y  
microscopía electrónica de barrido (SEM) para analizar el tipo de fractura producida. Todos los  
ensayos están en Normas Internacionales de ASTM o Estándares Internacionales de ISO.  
Finalmente, los datos experimentales indican que los materiales procesados con fibras naturales  
(fibras de yute-kenaf) tienen un mejor rendimiento mecánico global. En esta aplicación pueden  
mejorar económicamente el rendimiento cuando se usan termoplásticos no reforzados  
convencionales. Los compuestos de fibra-polipropileno naturales tienen algunos inconvenientes  
inherentes: el procesado y la materia prima.  
Palabras Clave: bajo costo; características físicas; compuesto; fibra natural; microestructura;  
paneles interiores; puertas de automóviles; polímero; polipropileno; propiedades mecánicas;  
reciclable; yute  
Abstract: This article presents the characteristics technical, economic and environmental to  
consider to make a piece of automotive use considerations, namely that meet the specifications. In  
this study, the properties and advantages of natural fiber composites in inner door panels are  
discussed. Natural fibers are replacing other materials in various parts of automobiles due to their  
lightweight, low cost, low CO2, recyclability. The goal of this project is the components that meet  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
109  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
the following requirements: construction simplicity, ease of manufacturing, placement of materials  
and low in cost. The paper describes the effects of several material parameters such as fiber  
treatments, microstructural composition, composite-manufacturing techniques, techniques  
properties, quantity of fiber to be added established in % weight, polymer type, etc. A several  
levels of the fiber content. The important of the tests: tensil and bending experiments have been  
carrying out to evaluate the resistance and plasticity, respectively, Charpy tests allowed  
establishing the influence of the fiber on the resilience of the composite, scanning electron  
microscopy (SEM) to analyze the type of fracture produced. All tests are in ASTM International  
Standards or ISO International Standards. Finally experimental data indicate that the materials  
processed with natural fibers (Jute-Kenaf fibers) has a better global mechanical performance. In  
this application they can economically improve performance when conventional unreinforced  
thermoplastics are used. Natural fiber-polypropylene composites have some inherent drawbacks:  
processing and feedstock.  
Key words: low cost; physical characteristics; composite; natural fiber; microstructure; interior  
anels; car doors; polymer; polypropylene; mechanical properties; recyclable, jute  
Introducción  
Los materiales plásticos, por lo general polímeros, son comúnmente usados en diferentes  
ramas de la ingeniería como: arquitectura, eléctrica, aeronáutica y automotriz. Siendo la industria  
automotriz, diseño y fabricación de partes del vehículo, la que más se ha desarrollado en los  
últimos años, debido a las exigencias de las restricciones sobre el medio ambiente. Siendo  
necesario el uso de materiales plásticos reforzados con fibras sintéticas y/o naturales. Las fibras  
naturales como: lino, yute, sisal, corteza de banano, entre otras; se ha usado en algunos  
componentes automotrices como: paneles interiores de puertas, espaldares, paneles de  
instrumentos, apoyacabezas, guardafangos, consolas y otros; por brindar algunas ventajas: más  
bajo costo, renovables y biodegradables. Estas fibras son procedentes de diferentes partes del  
mundo, principalmente donde existe clima cálido. El reemplazo de materiales como el aluminio,  
el acero, plásticos reforzados con fibras sintéticas (vidrio, carbono) permite la disminución de la  
masa y ahorro de combustible. Presentan una muy buena resistencia mecánica (Cristaldi, 2010).  
Esta tendencia empezó en Europa, luego continuó en EEUU y Asia.  
En base a las necesidades y especificaciones técnicas de la aplicación ingenieril a  
fabricar, en este caso un panel interior de las puertas de un automóvil, se debe analizar las  
condiciones de funcionamiento de la pieza, de manera individual y en conjunto; tomando en  
cuenta aspectos técnicos de diseño y fabricación. Como todo elemento de uso automotriz debe  
pasar por rigurosos métodos de evaluación y pruebas, para cumplir con las especificaciones: de  
seguridad, rendimiento, medioambientales, económicos, etc. En lo referente a las  
especificaciones técnicas más significativas de la pieza a fabricar se consideran: resistir a  
esfuerzos y cargas durante el impacto de tipo lateral, una óptima resistencia térmica, tener un  
buen acabado superficial, cumplir condiciones funcionales y dimensionales (específicos de  
acuerdo al tipo y clase de vehículo), resistencia a los golpes y fatiga, reacción favorable a  
factores medioambientales como humedad, rayos solares, materiales extraños (polvo, aceites,  
etc.). Aspectos como las prestaciones mecánicas, la resistencia térmica, o la emisión de  
componentes volátiles responsables de la aparición de olores en el interior de los vehículos deben  
mejorarse para los materiales usados en partes internas del vehículo.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
110  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Dada la importancia de alcanzar estándares de seguridad en los vehículos y su relación  
costo/beneficio existen algunas regulaciones que limitan uso de ciertos materiales, obligando  
así, a la búsqueda de nuevas alternativas en el uso de materiales para la fabricación de ciertas  
piezas del automóvil.  
Las regulaciones de Seguridad de los vehículos, establecen pruebas y estándares que  
deben cumplir los vehículos, es así en lo referido a las puertas y su componentes establecen en  
EEUU, según FMVSS (Federal Motor Vehicle Safety Standards) Parte 571- Resistencia al  
impacto, estipula en los estándares 201 y 214, lo relacionado con Protección de los ocupantes en  
impacto interno y Protección en impacto lateral; respectivamente (Figura 1 y Figura 2). También  
en la Parte 572-Sección F- Pruebas Dinámicas: de impacto lateral usando dummies (SIDs)-  
FMVSS 214 (Side Door Streength), para cumplir con las regulaciones del Departamento del  
Transporte de Estados Unidos (U.S. DOT). En Europa existen pruebas similares regidas por  
EuroNCAP.  
Figura 1. Test of Side Impact  
Recuperado de http://www.nhtsa.gov/cars/rules/import/FMVSS/  
En Europa según 2000/53/EC, normativa relacionada con la vida útil y reutilización de  
los vehículos, determinó que para el 2006, el 80% del vehículo debe ser reciclado y reusado,  
aumentando al 85% en el 2015. En Japón era de 88% en el 2005 y debe alcanzar el 95% en el  
2
015 (Holbery, 2006).  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
111  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 2. Schematic of test device. Recuperado de https://www.euroncap.com/es  
Determinado las condiciones de servicio de la pieza a fabricar, su comportamiento  
estático y dinámico, se debe satisfacer por parte del material compuesto (polímero/fibra natural)  
elegido ciertas características: mecánicas, físicas, químicas, ambientales y de fabricación (Saheb,  
1
999). Se analiza desde el punto de vista técnico las mejores opciones que existen para la  
elaboración de dicho material, considerando la disponibilidad de varios polímeros y así mismo  
de varias fibras naturales.  
Considerando a las fibras como el material innovador del compuesto, se determina sus  
características principales, considerando aspectos de obtención, tratamiento, procedimiento,  
fabricación, pruebas y análisis. Uno de los aspectos que se considera es la proporción con el  
polímero y la forma de fabricación, de manera de obtener un material adecuado para su  
procesado mediante las tecnologías de moldeo por inyección y termoconformado, procesos que  
mayoritariamente son usados en el sector automotriz, y que cumpla con los requerimientos para  
su empleo en el interior de los vehículos (Mueller D. H., 2004).  
Una vez elegido la fibra y el polímero, se analiza el comportamiento del mismo, su  
estructura, formas, características, se realiza un estudio de las alternativas de compuestos  
(polímero/fibra natural), que puedan determinarse las pruebas, procedimientos y resultados. Las  
pruebas se realizan de acuerdo a estándares internaciones de instituciones como ASTM, ISO,  
SAE principalmente. (Nur, 2010)  
Los problemas se presentan en la unión o cohesión entre la fibra y el polímero, y el  
posible surgimiento de posibles mecanismos de falla.  
Las ventajas de usar fibras naturales respecto a otros materiales, incluso otras fibras es  
muy significativo (Figura 3).  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
112  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 3. Relative merits of natural fibres composites. Recuperado de (Cristaldi, 2010)  
Es por ello que las organizaciones de normalización, como la Sociedad Americana para  
Pruebas y Materiales (ASTM) y la Organización Internacional de Normalización (ISO) han  
desarrollado estándares para medir el contenido de base biológica y la realización de  
evaluaciones del ciclo de vida.  
Descripción de la Aplicación  
Los paneles interiores de los vehículos Fig. 3, al igual que el resto de componentes de un  
automóvil deben cumplir ciertas características y especificaciones técnicas, para lo cual existe  
basta normativa al respecto (Holbery, 2006). Como ya se ha mencionado, la aplicación dónde se  
implementará el material compuesto por: un polímero y una fibra natural; es un componente de  
la puerta del automóvil, el panel interior; que cumple con los siguientes requisitos:  
Simplicidad de construcción.  
Facilidad de fabricación y colocación de materiales.  
Alta rigidez y seguridad.  
La pieza a fabricar es un panel interior de las puertas del automóvil (Figura. 4).  
Figura 4. Inner Door Panel Recuperado de (Holbery, 2006)  
Este elemento del vehículo debe cumplir las especificaciones técnicas de diseño y  
construcción, principalmente con las normas de seguridad, referidas al impacto lateral y  
condiciones de acoplamiento y dimensionado.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
113  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Son algunas las características que deben cumplir las partes interiores del vehículo y,  
específicamente; los paneles internos de las puertas, mismas que se mencionan a continuación:  
Resistir a los impactos.  
Tener peso reducido y ser biodegradable.  
No producir ruido ni vibraciones.  
Estar dimensionalmente óptima, acorde al tipo de vehículo (Dimensiones del habitáculo).  
Durabilidad y fácil recambio.  
Resistir los efectos medioambientales, principalmente la humedad y calor; producidos en  
el interior del vehículo.  
Acabado aceptable.  
Bajo costo.  
En la Tabla 1 se observa los pesos promedios de las partes internas de los automóviles,  
usando compuestos con refuerzos de fibras naturales.  
Tabla 1  
Weight of Automotive’s  
Component  
Weight (Kg)  
Front door lines 1.2-1.8  
Rear door lines  
Boot liners  
0.8-1.5  
1.5-2.5  
Parcel shelves  
Seat backs  
<2  
1.6 2  
Sunroof shields  
Headrest  
<0.4  
2.5  
Nota. Adaptado de Organized by FAO and CFC, (págs. (Vol. 20, pp. 71-82) (Suddell, 2008, October)  
Actualmente, algunas marcas de vehículos ya fabrican un determinado número de piezas  
usando materiales compuestos con fibras naturales (Fig. 4). Con este fin se han utilizado estos  
materiales en el interior de una gran cantidad de vehículos. Como ejemplo, en 1996  
MercedesBenz usó una matriz epoxy con de fibras de yute para los paneles de las puertas en  
vehículos clase E y en el 2000 Audi usó poliuretano reforzado con fibras de lino y sisal para  
recubrimientos de puertas.  
Tomando en consideración las ventajas ofrecidas por las fibras naturales, su uso es más  
frecuente en las partes internas del vehículo, ya que disminuye el peso del vehículo y son más  
económicas. En las industrias manufactureras de automóviles el objetivo final es reducir hasta un  
3
0% en peso y un 20% en costo (Ahmad, 2015).  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
114  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 5. Automotive components made of natural fiber-reinforced composites Recuperado de  
http://www.sciencedirect.com/science/article/pii/S1369702103004292  
Requerimientos del material  
Los materiales de uso ingenieril, en el campo automotriz, como todos exigen algunas  
características que deben cumplir.  
Las propiedades de algunas de las fibras naturales pueden observarse en la Tabla II.  
Tabla 2  
Chemical composition of natural fibers  
Fiber  
Cellulose (Wt%)  
Banana  
Cotton  
Flax  
63-64  
85-90  
71  
Hemp  
Henequen  
Jute  
68  
60  
61-71  
65  
Sisal  
Recuperado de (John, 2008)  
Las fibras naturales contienen 60-80% de celulosa, 5-20% de lignina y hasta un 20 % de  
humedad (Saheb, 1999).  
Tabla 3  
Chemical composition  
3
Density (kg/m ) Cell  
l/d ratio Microfibrilla r Angel (ø)  
Fibers  
Diameter (um)  
Banana  
80-250  
50-220  
20-80  
1350  
1450  
1440  
1090  
150  
100  
450  
43  
10+-1  
10-22  
8-14  
Sisal  
Pineapple leaf  
Palmira  
70-1300  
29-32  
Adaptado de (ElayaPerumal, 2008)  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
115  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Las propiedades físicas de las fibras naturales se determinan principalmente por la  
composición química y física, tal como la estructura de fibras, contenido de celulosa, el ángulo  
de las fibrillas, sección transversal, y por el grado de polimerización (Tabla III). Sólo unos pocos  
valores característicos, pero especialmente las propiedades mecánicas específicas, pueden  
alcanzar valores comparables de fibras de refuerzo tradicionales.  
Debido a los esfuerzos que va a estar sometido es necesario cumplir con ciertas  
propiedades físicas y mecánicas del material.  
La resistencia a la tracción y el módulo de Young de las fibras aumenta con el  
porcentaje de celulosa. El ángulo de las microfibrillas determina la rigidez de las fibras (George,  
2
001) (Ahmad, 2015). La Tabla IV, presenta las propiedades físicas y mecánicas importantes de  
los diferentes tipos de fibras.Otro factor a considerar es el costo del material y el proceso de  
cultivo, tratamiento y producción.  
Las fibras naturales son fibras renovables cultivadas en campos y pueden ser utilizadas  
como refuerzo en la manufactura de un material compuesto de la misma manera que una fibra  
sintética. Algunos ejemplos de las fibras más utilizadas son: abacá, cáñamo, lino, yute y ramina.  
Las fibras de yute son las más cultivadas en todo el mundo con excelentes prestaciones  
mecánicas. Así mismo, el lino es una de las fibras relativamente más fuerte y rígida y más  
demandadas en Europa.  
Las fibras naturales son más económicas y livianas para reducir el peso del automóvil  
(Mohanty, 2002).  
Tabla 4  
Physical and mechanical properties of selected natural fibers  
Elongation at break  
(%)  
Tensile  
Tensile  
Density (g/cm3)  
Fiber  
Strength (MPa)  
Modulus (GPa)  
name  
Banana  
Sisal  
Jute  
1.35  
1.45  
1.46  
1.5  
600  
530-640  
17.85  
3.36  
9.4-22  
10-30  
27.6-80  
3-7  
393-800  
1.5-1.8  
1.2-3.2  
Flax  
800-1500  
Adaptado de (Ahmad, 2015)  
Ventajas de las fibras naturales  
La versatilidad de las fibras naturales se basa en las siguientes propiedades:  
Fibras vegetales son una materia prima renovable y su disponibilidad es más o menos  
ilimitada.  
Tiene muy buenas propiedades mecánicas, especialmente la fuerza de tracción. En  
relación a su peso, las mejores fibras, pueden alcanzar fuerza similar a la de Kevlar.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
116  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Posee buen desempeño como aislante térmico, acústico y propiedades de aislamiento  
eléctrico.  
Combustibilidad: productos pueden ser eliminados a través de la quema al final de su  
vida de servicio útil y se puede generar energía al mismo tiempo.  
Biodegradabilidad: como resultado de su tendencia a absorber agua, fibras naturales se  
biodegradan en determinadas circunstancias (hongos y / o bacterias).  
Su naturaleza abrasiva es mucho menor en comparación con la de fibra de vidrio, lo que  
conlleva a, un reciclado de material técnico o procesamiento de materiales compuestos  
en general.  
Reactividad: los grupos hidroxilo que están en los constituyentes de la pared celular no  
sólo proporcionan sitios para la absorción de agua, sino también están disponibles para  
modificación química (por ejemplo, introducir estabilidad dimensional, durabilidad o  
mejoradas propiedades de absorción de aceite / metal pesado). (ElayaPerumal, 2008)  
Desventajas de las fibras naturales  
A continuación se enlistan algunos de los inconvenientes de las fibras naturales:  
Propiedades de resistencia más bajos, en particular su resistencia al impacto.  
La variabilidad en la calidad, en función de las influencias impredecibles como el clima.  
La absorción de humedad, lo que provoca la inflamación de las fibras.  
La máxima temperatura de procesamiento es restringida.  
Baja durabilidad, se puede mejorar efectuándole tratamientos.  
Poca resistencia al fuego.  
A consecuencia de la higroscopicidad de las fibras, productos y material a base de fibras  
vegetales no son dimensionalmente estable bajo condiciones de humedad cambiante.  
Al realizar un análisis de las diferentes propiedades de los materiales se puede obtener  
una comparación de las fibras naturales, respecto a otros materiales en este caso las fibras  
sintéticas (fibra de vidrio) que también son usadas en la fabricación de los componentes  
analizados.  
Figura 6. Comparison between natural fiber and glass fiber Adaptado de (Faruk, Biocomposites reinforced with  
natural fibers: 20002010. Progress in Polymer Science, 2012. 37(11))  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
117  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 7. Comparison between natural fiber and glass fiber Adaptado de (Faruk, Biocomposites reinforced with  
natural fibers: 20002010. Progress in Polymer Science, 2012. 37(11))  
En las Figura 6 y Figura 7, se compara las fibras naturales con respecto a la fibra de  
vidrio. Se puede observar que los objetivos principales del componente a fabricar son el precio,  
reutilizables y un esfuerzo medio. En la Figura 8 se ve también graficada lo referente a la fibra  
de carbono, material muy utilizado; sobre todo en vehículos de alta gama.  
Figura 8. Comparison between natural fiber, glass fiber, and carbon fiber. Adaptado de (Faruk, Biocomposites  
reinforced with natural fibers: 20002010. Progress in Polymer Science, 2012. 37(11))  
Realizando un análisis en general se puede ver las ventajas respecto a los factores  
técnicos, económicos, ambientales y sociales (Figura 9).  
Figura 9. Comparison between jute and glass composites based bonnet’s aspects. Adaptado de (Faruk,  
Biocomposites reinforced with natural fibers: 20002010. Progress in Polymer Science, 2012. 37(11))  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
118  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Como ejemplo de consumo de energía para producir un compuesto de un fibra de lino  
(flax) la energía consumida es de aproximadamente 9.55 MJ/kg, incluido el cultivo, curación y  
separación; en comparación con los 54.7 MJ/kg, que consume una fibra de vidrio. Datos de  
consumo de energía, de diferentes fibras podemos observar en la Figura 10 y costos por el peso  
en la Figura 11.  
Figura 10. Energy for production of fibers Recuperado de (Faruk, Progress report on natural fiber reinforced  
composites , 2014)  
Otro factor a considerar es el costo del material, ya que la mayoría de fibras si cumple  
con algunas de las propiedades físicas y químicas solicitadas.  
Figura. 11. Cost per weight comparison Recuperado de (Faruk, Progress report on natural fiber reinforced  
composites , 2014)  
A continuación se analiza el polímero que mejores prestaciones proporciona para la  
elaboración de la pieza a fabricar, se realiza una comparación entre los termoplásticos y los  
termofijos, que son los polímeros que más comúnmente se utilizan en compuestos con fibras  
naturales. En la Tabla 5 puede observarse las ventajas y desventajas, entre ellos.  
Tabla 5  
Thermoplastics vs Thermosets  
Thermoplastics  
Thermosets  
Pros  
Pros  
High Impact Strength  
Easy to process and laminate  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
119  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Does not necessarily need pressure or heat to form  
Attractive Surface Finish  
Recyclable / Scrap is Reusable  
Typically inexpensive  
No Emissions  
Typically stronger than thermoplastics  
Better suited to higher temperatures than thermoplastics  
Can bond to other thermoplastics  
Can be molded or shaped by  
reheating  
Cons  
Cons  
Often release emissions known as volatile organic compounds  
Typically will soften with heat  
(
VOCs)  
Non-recyclable and cannot be reclaimed  
easily  
More difficult to prototype  
Short  
workable  
pot  
life, with  
some  
exceptions  
Analizando las características de los diferentes polímeros, se optó por el Polipropileno  
PP), por ofrecer las siguientes características idóneas para la aplicación automotriz a usarse:  
(
Excelentes propiedades físicas, químicas, mecánicas, térmicas y eléctricas  
Bajo en peso.  
Excelente resistencia a las manchas, disolventes orgánicos, y desengrasado.  
Resistencia al ataque electrolítico.  
Baja tasa de absorción de humedad.  
Resaltándose el hecho de su economía, su baja densidad y resistencia a los golpes e  
impactos, factores objetivos de la aplicación donde se utilizará el compuesto.  
El polipropileno a nivel molecular se compone de una cadena principal de átomos de  
carbono enlazados entre sí a las cuales se les añaden grupos metilo ambos lados (Hill, 2012).  
Las matrices poliméricas más usadas como compuestos de fibras son las siguientes  
(Faruk, Biocomposites reinforced with natural fibers , 2012): base petroquímica como los  
termoplásticos (polipropileno (PP), polietileno (PE), poli estireno (PS) y PVC Cloruro de  
polivinilo) y termo fijos (poliéster, resina epóxica, fenol formaldehido, éster de vinilo). Tabla 6.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
120  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Tabla 6  
Properties of Polymers  
Recuperado de (Holbery, 2006)  
Figura 12. Tensile strength versus cost per volumen Recuperado de (Ashby, 1989)  
En la Figura 12 se evalúa el módulo de tensión respecto al costo por unidad de volumen,  
y en la Figura 13 se puede apreciar la resistencia a la tensión respecto a la densidad del  
compuesto.  
Figura 13. Tensile strength versus density diagram Recuperado de (Ashby, 1989)  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
121  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Descripción del Material Propuesto  
Un material compuesto (composite) está formado principalmente por una combinación o  
mezcla de dos constituyentes que difieren en forma y composición química, y además por lo  
general son insolubles entre sí (Tabla 7). Estos materiales comprenden una fase continua llamada  
matriz y una discontinua llamada refuerzo (Satyanarayana, 2007). La matriz es la que contribuye  
a distribuir y estabilizar los esfuerzos y de proteger. Por otro lado la fase de refuerzo aporta las  
propiedades mecánicas al material.  
Tabla 7  
Properties  
Thermoplastic  
Natural fibers  
Polypropylene  
Curaua, flax, green coconut husks,  
(
PP)  
Polyethylene  
PE)  
hemp, jute, palm, sisal, wheat straw  
Banana, green coconut husks, rice husks,  
sisal, sugarcane bagasse  
(
High  
density Banana, wood  
polyethylene  
(
HDPE)  
High impact polystyrene  
HIPS)  
sisal, curaua  
green coconut husks  
sisal, sugarcane bagasse  
(
Los materiales compuestos pueden clasificarse según el tipo de matriz en metálicos,  
cerámicos y poliméricos. La matriz usada en el proceso de fabricación de piezas de este tipo  
PMC.  
Los refuerzos propuestos son fibras naturales, principalmente de cultivos agrícolas, para  
el presente artículo se consideró el cáñamo (Kenaf) y para ciertas pruebas el yute.  
Para elaborar los paneles interiores de puertas del automóvil, se utilizó un polímero  
termoplástico: Polipropileno (PP).  
Fabricación del compuesto  
Hay que dirigir la fabricación de compuestos con fibras naturales a obtener propiedades  
superiores, que incluye la modificación química eficaz, eficiente y económica de la fibra, la  
modificación de la matriz de funcionalización y la combinación de técnicas de procesamiento.  
Por el lado la fibra se debe considerar el tipo, la composición química, las condiciones  
ambientales de crecimiento, los ángulos de las microfibras, los defectos, la estructura, las  
propiedades físicas y mecánicas y la interacción de la fibra con el polímero, entre otros.  
Técnicas de procesamiento  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
122  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Generalmente estos materiales son fabricados con técnicas tradicionales Figura 14, tales  
como: moldeo por compresión y/o moldeo por transferencia de resina RTM.  
Las fibras se fraccionan y desbastan de la superficie de la fibra para mejorar su  
uniformidad y mejorar su potencial como refuerzo.  
Figura 14. Fiber-based moulded parts Recuperado de http://www.globalhemp.com/2011/02/automotive-  
composites.html  
Dentro de los principales factores que influyen en el procesamiento tenemos:  
Humedad relativa: (diseñado un nuevo tornillo extrusor -mayor L/D proporción, lo que  
permite una mejor desgasificación y en consecuencia menor contenido de humedad)  
Tipo de fibra y contenido: longitud de las fibras, composición. Algunas formas de  
ubicarlas, unidireccionalmente, seguida de una forma tejida, en pequeñas partículas y por último  
de forma transversal (Lee, 2009).  
Propiedades y características  
El material propuesto debe cumplir ciertas propiedades, las cuales se evalúan en función  
de su uso interior, las especificaciones serán evaluadas de acuerdo a las normas de ensayo para  
comprobar las siguientes propiedades:  
Físicas: densidad, contenido de humedad, contenido de vacío, fracción de volumen, etc.  
Mecánicas: resistencia al impacto, tracción, etc.  
Durabilidad: envejecimiento artificial, hinchazón y absorción, etc.  
Térmicas: dilatación lineal, conductividad térmica, acción del calor.  
Fuego: límite de oxígeno, reacción al fuego.  
Otras propiedades  
Tabla 8: Applications of Natural Fibers Composites-NFC in automobile  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
123  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Recuperado de (Faruk, Progress report on natural fiber reinforced composites , 2014)  
Fracción de volumen de la fibra, contenido de Vacío y morfología de la superficie.  
El contenido de vacíos (Figura 16) de las fibras naturales / PP compuestos se determinó  
utilizando la siguiente fórmula (ASTM D2734).  
V = 100(Td Md)/Td  
V, Td, y Md fracción de volumen (vol. %), densidad teórica (g/cm3) y densidad  
medida (g/cm3), respectivamente.  
La superficie de fractura del espécimen fue probada usando un microscopio electrónico  
de barrido de superfice-SEM (Lee, 2009)  
La Figura 15 muestra las fibras naturales que fueron recolectadas después de disolver  
la matriz de PP.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
124  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 15. Natural fibers collected after dissolving PP matrix in composites. Recuperado de (Ahmad, 2015)  
Figura 16. Void contents of natural fiber reinforced PP composites according to nominal fiber fraction by weight.  
Recuperado de (Lee, 2009)  
Composición química  
Las fibras naturales lignocelulósicas (Fig. 16) están compuestas principalmente de  
celulosa, hemicelulosa, lignina y pectina con una pequeña cantidad de extractivos (ver Figura17)  
Figura 17. Composition of natural fiber Adapatado de (Schlöesser, 2004)  
Según las características químicas de la fibra se obtienen mejoras en las propiedades a  
evaluar (Figura 18).  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
125  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 18. Properties of cellulose fibers and their dependence on chemical constituents. Adaptado de (Schlöesser,  
2
004)  
Estructura física  
Las fibras son básicamente una rígida celulosa cristalina, reforzada con microfibrillas  
amorfas de lignina y/o matriz de hemicelulosa, donde; la hemicelulosa actúa como una matriz de  
cementación entre las microfibrillas de celulosa, e incrementa la rigidez del compuesto  
hemicelulosa/celulosa (Figura 19). Las microfibrillas poseen un diámetro entre 10-30 nm y  
tienen entre 30-100 moléculas de celulosa.  
Figura 19. Physical Structure Recuperado de (Schlöesser, 2004)  
La matriz junta las fibras, transfiere la carga, establece la forma de estructura y permite  
buenos acabados superficiales.  
Esta estructura física puede ser modificada mediante el uso de procesos de tratamiento y  
de acetilación alcalinos. La aplicación de fibras naturales como refuerzos en materiales  
compuestos requiere, al igual que para materiales compuestos reforzados de fibra de vidrio, una  
fuerte adhesión entre la fibra y la matriz, independientemente de si un polímero tradicional  
(
termoplástico o termoestable) de la matriz, una matriz de polímero biodegradable se utiliza.  
Modificación superficial  
Las fibras naturales incrementan su adhesión con la matriz del compuesto a través de  
tratamientos físicos y químicos, las modificaciones superficiales incluyen: tratamientos físicos,  
como extracción con disolventes; tratamientos físico-químicos, como el uso de descargas corona  
y plasma o láser, rayos-γ y el bombardeo UV y las modificaciones químicas (Belgacem, 2005).  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
126  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Propiedades mecánicas  
Al realizar la caracterización mecánica se opta por algunas pruebas, que se mencionan a  
continuación (Nur, 2010):  
Prueba de Tensión: Este ensayo se utiliza para evaluar principalmente la resistencia  
última a la tensión, la elongación y módulo de Young de un material. La máquina generalmente  
usada es una Universal Tensile Testing Machine, con una capacidad aproximada de 10 kN y  
velocidad de 1mm/min. El espécimen de la prueba fue preparado según ASTM D638-01 (2002)  
y la prueba estática de tensión fue realizada, siguiendo la misma norma.  
Resistencia a la flexión: La norma generalmente usada es la ASTM D 790-00 (2002).  
Las propiedades de flexión de la fibra natural / PP materiales compuestos se caracterizaron  
usando ASTM D638-03.  
Tenacidad: Prueba de impacto: Las normas más usadas para la realización de esta prueba  
son: ASTM D256-10 Determining the Izod Pendulun Impact resistance of plastics y ASTM  
D6110-10 Standard Test Method for Determining the Charpy Impact Resistance of Notched  
Specimens of Plastics.  
Prueba de absorción de agua: se realiza conforme la norma ASTM D 570-99 (2002). Para  
esto las muestras se secan por aproximadamente 2 horas y a 105 °C. Se usa una balanza con  
precisión de 0.0001g. Se calcula el incremento en peso después de la inmersión en un recipiente  
de agua (boiling water) durante 2 horas.  
Figura 20. Image of polypropylene (PP) granules Recuperado de (Siddika, 2013)  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
127  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 21. SEM image of juter fiber Recuperado de (Siddika, 2013)  
En la Figura 20 puede observarse la forma en que se presenta el polipropileno y en la  
Figura 21 se observa la imagen de una fibra de yute (usando un microscopio)  
Microscopia Electrónica de Barrido: Scanning Electron Microscopy (SEM)  
Se basa en la toma de imágenes de alta resolución de diferentes muestras del material,  
utilizando un haz de electrones. Se pueden lograr acercamientos de hasta 1 nm., usando  
instrumentos de alta resolución y de 3 nm., usando instrumentos convencionales. Se usa para  
visualizar la superficie y analizar su estructura interna, al fracturar las muestras. Se pueden  
obtener imágenes desde diferentes ángulos y en 3D. Analizar sobre todo las superficies de  
fractura de los ensayos de tensión, principalmente.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
128  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 22. SEM micrographs of the fracture surface of jute fiber reinforced composite with nominal fiber fractions  
of (a) 30 %, (b) 50 %, and (c) 70 %. Recuperado de (Lee, 2009)  
En la Figura 22 se puede observar la composición de la fibra y la matriz, luego de la  
fractura, analizado a diferentes porcentajes de proporción de la fibra.  
La muestra tiene unas dimensiones de 2.54 cm x 18.8 cm x 0.8 cm. Las fibras fueron  
cortadas de 3-5 mm de longitud. La humedad fue removida por un tiempo de 20 min a 80°C.  
Resultados  
A continuación se analizan resultados obtenidos de diversas pruebas con algunos  
materiales.  
Propiedades de tensión:  
Analizando el Módulo de Young y Esfuerzo de Tensión, en cada una de las muestras del  
compuesto, con un contenido de 5, 10, 15 y 20% para cada fibra, con la ayuda de la curva  
esfuerzo/deformación (Stress/Strain) para yute.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
129  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 23. Variation of tensile strength at different fiber content Recuperado de (Siddika, 2013)  
En la Figura 23 se puede apreciar que el valor de la resistencia a la tracción decrece con  
un incremento en la carga (porcentaje de fibra).  
Figura 24. Variation of Young´s modulus at different fiber content Recuperado de (Siddika, 2013)  
La variación de la fuerza de tensión en función del porcentaje de fibra se observa en la  
Figura 24, lo cual nos muestra que a mayor porcentaje de fibra de este tipo menor valor de la  
fuerza de tensión.  
En lo referente a la resistencia a la flexión, podemos observar en la Figura 25, como el  
porcentaje mayor de fibra en la matriz ayuda a elevar esta propiedad.  
Figura 25. Variation of flexure strength at different fiber content Recuperado de (Siddika, 2013)  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
130  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 26. Variation of flexure modulus at different fiber content Recuperado de (Siddika, 2013)  
La Figura 26 muestra que así mismo el Modulo de Flexión aumenta con el porcentaje de  
carga (fibra).  
Fuerza de impacto: Impact Strength  
Una variación de la prueba de Charpy, en función del porcentaje de fibra se observa en la  
Figura 27.  
Figura 27. Variation impact strength at different fiber content Recuperado de (Siddika, 2013)  
Dureza Depende de la distribución de la carga en la matriz y una mejor dispersión de la  
carga en la matriz con minimización de huecos.  
La Figura 28 muestra los valores de las fuerzas de tensión, compresión y flexión, para  
algunos compuestos, donde se puede apreciar que al usar cualquier tipo de fibra natural, las  
propiedades mecánicas del material no varían mucho, y están acordes a las necesidades exigidas  
en la fabricación de la pieza.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
131  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Figura 28. Some of mechanical properties of natural fiber reinforced polymer composite Recuperado de (Westman,  
2
010)  
Figura 29. Variation of hardness at different fiber content Recuperado de (Siddika, 2013)  
La fuerza al impacto (Figura 27) y la dureza (Figura 29), también aumentan en función de  
la cantidad (%) de fibra existente en el compuesto.  
Morfología de la superficie  
La Figura 30 nos muestra la fibra con tratamiento y sin tratamiento.  
Figura 30. Fibers Recuperado de (Nur, 2010)  
En la Figura 31 observamos el material para el procesamiento al inicio, terminada su  
primera fase y el resultado final del panel interior para una puerta del automóvil. Las  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
132  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
especificaciones del material son 1600 g/m2, 50% de fibra- 50% de polipropileno (Holbery,  
2
006).  
Las superficies de fractura del yute / PP compuestos eran investigado utilizando la  
micrografía SEM en la Figura 32. La yute / PP material compuesto con una fracción de fibra  
nominal de 30% (en peso) contiene matriz de PP más continua que cualquiera de los más altos de  
la fracción de fibra-compuestos. Las fibras de yute en Figura 32 (a) parece estar rodeado por la  
matriz de PP, mientras que algunos de ellos se retiraron durante el ensayo de tracción. Nota que  
los huecos se pueden observar en la Figura 32 (b) y (c).  
Figura 31. Inner Panel Doors Adaptado de (Ayrilmis, 2011)  
Figura 32. SEM images of the fracture surface of the PP composites reinforced with kenaf fibers digested at (a)  
8
0°C, (b) 110◦ C, (c) 130◦ C, and (d) 160◦ C. Adaptado de (Aziz, 2004)  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
133  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Conclusiones  
El material para aplicaciones de uso automotriz, en interiores puede ser uno del tipo  
matriz de material polimérico (Termofijo o Termoplástico) con reforzamiento de fibras sintéticas  
o naturales.  
Para nuestro caso el material seleccionado para la fabricación de paneles internos de las  
puertas de un automóvil es un material polimérico (polipropileno) con un reforzamiento de fibra  
natural que es yute.  
El compuesto brinda muchas ventajas, siendo las principales buenas características  
mecánicas, propiedades físicas acordes a la aplicación, bajo costo de fabricación, buen acabado.  
Las condiciones de servicio definidas para los paneles internos, tienen relación directa  
con las dimensiones del habitáculo y condiciones de seguridad, en impactos de tipo lateral.  
La implementación de este tipo de materiales en la fabricación de piezas automotrices, es  
muy frecuente, por lo relacionado a las normas de reciclado y reusado de las partes de los  
automóviles.  
Las fibras naturales pueden sustituir a las fibras sintéticas (Sustitución de fibra de  
vidrio), especialmente para la fabricación de partes del interior del coche como: paneles de  
puertas, estantes de paquetería, y apoyacabezas.  
Se ha observado que, además de su alta resistencia y rigidez por unidad de peso y las  
virtudes ambientales, los materiales tienen también otras ventajas. Estos incluyen el aislamiento  
acústico, fácil gestión de la salud y la seguridad, la producción rápida por compresión o moldeo  
por inyección, y potencialmente menor costo.  
A mayor porcentaje de fibra natural en el compuesto mejor las prestaciones mecánicas, en  
nuestro caso definimos un máximo de 20% por las solicitaciones de los componentes internos,  
que son menores alas exteriores.  
El porcentaje en disminución del peso de los componentes al usar las fibras naturales con  
polímeros, oscila alrededor de un 20-30%.  
Para mejorar la unión (cohesión) entre la fibra y la matriz (PP) se pueden usar algunos  
métodos de tratamiento.  
El principal inconveniente que tienen estos materiales es la temperatura que puede  
alcanzar la fibra 180-200°C y otro la cantidad de humedad que tiene la fibra.  
Para solventar problemas de humedad de la fibra se puede realizar tratamientos de secado  
y optimización del proceso.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
134  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Los factores importantes considerados en la elección del material, para esta aplicación  
específica, es el bajo costo, factor ecológico y disminución de peso.  
Se consideró los esfuerzos a tensión e impacto, mismos que deben estar relativamente  
bajos, si los comparamos con elementos externos del vehículo.  
Los componentes químicos de la fibra son otro factor importante (cantidad de celulosa)  
tipo de fibra, que en muchos casos dependen de factores como clima y tipo de cultivo.  
En el desarrollo de este tipo de materiales, se está poniendo mucho énfasis y presupuesto,  
por parte de los investigadores y fabricantes de vehículos.  
Hay que dirigir la fabricación de compuestos con fibras naturales a obtener propiedades  
superiores, que incluye la modificación química eficaz, eficiente y económica de la fibra, la  
modificación de la matriz de funcionalización y la combinación de técnicas de procesamiento.  
Bibliografía  
Ahmad, F. C. (2015). A review: natural fiber composites selection in view of mechanical, light  
weight, and economic properties. . Macromolecular Materials and Engineering, 300(1), 10-  
2
4.  
Ashby, M. F. (1989). Materials selection in conceptual design. Materials science and technology.  
Ayrilmis, N. J. (2011). Coir fiber reinforced polypropylene composite panel for automotive  
interior applications . Fibers and polymers, 12(7), 919-926.  
Aziz, S. H. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal  
properties of kenaf and hemp bast fibre composites: part 2cashew nut shell liquid matrix.  
Composites Science and Technology,, 64(9), 1231-123.  
Belgacem, M. a. (2005). The surface modification of cellulose fibres for use as reinforcing  
elements in composite materials. Composite Interfaces, , 12(1-2): p. 41-75.  
Cristaldi, G. L. (2010). Composites based on natural fibre fabrics. . Woven fabric engineering,  
3
17-342.  
ElayaPerumal, A. &. (2008). Natural Fiber-Reinforced Polymer Composites in Automotive  
Applications-A Review. . IJAEA, 1(6), 68-74.  
Faruk, O. B. (2012). Biocomposites reinforced with natural fibers . Progress in Polymer Science,  
3
7(11), 1552-1596.  
Faruk, O. B. (2014). Progress report on natural fiber reinforced composites . Macromolecular  
Materials and Engineering, 299(1), 9-26.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
135  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Faruk, O. B. (n.d.). Biocomposites reinforced with natural fibers: 20002010. Progress in  
Polymer Science, 2012. 37(11). p1552-1596.  
George, J. S. (2001). A review on interface modification and characterization of natural fiber  
reinforced plastic composites. Polymer Engineering & Science, 41(9), 1471-1485.  
Hill, K. S. (2012). The bio-based materials automotive value chain. Center for Automotive  
Research, 112.  
Holbery, J. &. (2006). Natural-fiber-reinforced polymer composites in automotive applications.  
Jom, 58(11), 80-86.  
http://www.crc-acs.com.au/index.php/news/12-main-articles/technical-articles/148-technical-  
articlenatural-fibre-composites. (n.d.).  
http://www.globalhemp.com/2011/02/automotive-composites.html. (n.d.).  
http://www.nhtsa.gov/cars/rules/import/FMVSS/. (n.d.).  
https://www.euroncap.com/es. (n.d.).  
John, M. J. (2008). Recent developments in chemical modification and characterization of  
natural fiber-reinforced composites. . Polymer composites, 29(2), 187.  
Kinoshita, A. S. (2012). Development of Pole Side Impact Sled Test Method using Multiple  
Actuators for EuroNCAP, . SAE Technical Paper 2012-01-0095 , doi:10.4271/2012-01-  
0
095.  
Lee, B. H. (2009). Fabrication of long and discontinuous natural fiber reinforced polypropylene  
biocomposites and their mechanical properties. Fibers and Polymers, 10(1), 83-90.  
Majewski, T. &. (n.d.). Desarrollo y aplicaciones actuales de los plásticos reforzados por fibras  
naturales. reproducción, 2, 4.  
Mohanty, A. K. (2002). Sustainable bio-composites from renewable resources: opportunities and  
challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2),  
1
9-26.  
Monteiro, S. N. (2009). Natural-fiber polymer-matrix composites: cheaper, tougher, and  
environmentally friendly. Jom, 61(1), 17-22.  
Mueller, D. H. (2002, September). Acoustical properties of reinforced composite materials and  
layered structures basing on natural fibers. . In Proceedings of the INTC-International  
Nonwov.  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
136  
INNOVA Research Journal 2017, Vol 2, No. 10.1, pp. 109-137  
Mueller, D. H. (2004). Improving the impact strength of natural fiber reinforced composites by  
specifically designed material and process parameters . Int. Nonwovens J, 13(4), 31-38.  
Nur, H. P. (2010). Nur, H. P., Hossain, M. A., Sultana, S., & Mollah, M. M. (2010). Preparation  
of polymer composites using natural fiber and their physico-mechanical properties.  
Bangladesh Journal of Scientific and Industrial Research, 45(2), 117-122.  
Pan, N. (1993). Theoretical determination of the optimal fiber volume fraction and fiber-matrix  
property compatibility of short fiber composites. Polymer composites. 14(2), 85-93.  
Saheb, D. N. (1999). Natural fiber polymer composites: a review. . Advances in polymer  
technology, 18(4), 351-363.  
Satyanarayana, K. G. (2007). Studies on lignocellulosic fibers of Brazil. Part I: Source,  
production, morphology, properties and applications. Composites Part A: Applied Science  
and Manufacturing, . 38(7).  
Schlöesser, T. P. (2004). Natural fiber reinforced automotive parts. In Natural Fibers, Plastics  
and Composites. Springer US., (pp. 275-285).  
Siddika, S. M. (2013). Physico-Mechanical Properties of Jute-Coir Fiber Reinforced Hybrid  
Polypropylene Composites. World Academy of Science, Engineering and Technology, 73,  
1
1451149.  
Suddell, B. C. (2008, October). Industrial fibres: recent and current developments. In  
Proceedings of the Symposium on Natural Fibres. . Organized by FAO and CFC, (pp. (Vol.  
2
0, pp. 71-82).). Rome.  
Taj, S. M. (2007). Natural fiber-reinforced polymer composites. Proceedings-Pakistan Academy  
of Sciences, 44(2), 129.  
Westman, M. P. (2010). Westman, M. P., Fifield, L. S., Simmons, K. Natural Fiber Composites:  
A Review (No. PNNL-19220). . Pacific Northwest National Laboratory (PNNL), Richland,  
WA (US).  
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/  
137