INNOVA Research Journal 2021, Vol 6, No. 1, pp. 216-231
https://doi.org/10.1111/j.1467-629x.1984.tb00054.x
Egger, P., & Pfaffermayr, M. (2003). The proper panel econometric specification of the gravity
equation: A three-way model with bilateral interaction effects. Empirical Economics,
2
8(3), 571-580. https://doi.org/10.1007/s001810200146
Ferguson, S., & Gars, J. (2019). Measuring the impact of agricultural production shocks on
international trade flows. European Review of Agricultural Economics, 47(3), 1094-1132.
https://doi.org/10.1093/erae/jbz013
Fuller, K., Kennedy, P., Hall, M., & Rouge, B. (2019). Determination of factors influenncing sugar
trade. International Journal of Food and Agricultural Economics A, 7(1), 19-29.
Grant, J., & Lambert, D. (2005). Regionalism in world agricultural Tradeꢀ: Lessons from gravity
model
https://doi.org/10.22004/ag.econ.19269
Gujarati, D., & Porter, D. (2010). Econometría (McGraw-Hill (ed.); 5. ed.).
estimation.
American
Agricultural
Economics,
24-27.
a
Helpman, E., & Krugman, P. (1985). Market Structure and Foreign Trade: Increasing Returns,
Imperfect Competition, and the International Economy (MIT Press (ed.)).
Jayasinghe, S., & Sarker, R. (2008). Effects of regional trade agreements on trade in agrifood
products: Evidence from gravity modeling using disaggregated data. En Review of
Agricultural Economics (Vol. 30, Número 1). https://doi.org/10.1111/j.1467-
9
353.2007.00392.x
Kabir, M., Salim, R., & Al-Mawali, N. (2017). The gravity model and trade flows: Recent
developments in econometric modeling and empirical evidence. Economic Analysis and
Policy, 56, 60-71. https://doi.org/10.1016/j.eap.2017.08.005
Kepaptsoglou, K., Karlaftis, M., & Tsamboulas, D. (2010). The Gravity Model Specification for
Modeling International Trade Flows and Free Trade Agreement Effects: A 10-Year Review
of
https://doi.org/http://dx.doi.org/10.2174/1874919401003010001
Krugman, P., Obstfeld, M., & Melitz, M. J. (2012). Economía internacional Teoría y política
Empirical
Studie.
The
Open
Economics
Journal,
3,
1-13.
a
PEARSON EDUCACIÓN (ed.); 9. ed.).
(
Linnemann, H. (1966). An Econometric Study of International Trade Flows. Holland Publishing.
Morland, C., Schier, F., & Weimar, H. (2020). The structural gravity model and its implications
on global forest product trade. Forests, 11(2). https://doi.org/10.3390/f11020178
Natale, F., Borrello, A., & Motova, A. (2015). Analysis of the determinants of international
seafood trade using
a
gravity model. Marine Policy, 60, 98-106.
https://doi.org/10.1016/j.marpol.2015.05.016
Nilsson, L. (2000). Trade integration and the EU economic membership criteria. European Journal
of Political Economy, 16(2), 807-827. https://doi.org/10.1016/s0001-2092(06)63222-5
Novy, D. (2013). Gravity redux: Measuring international trade costs with panel data. Economic
Inquiry, 51(1), 101-121. https://doi.org/10.1111/j.1465-7295.2011.00439.x
Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2020). Datos sobre
alimentación y agricultura.
Organización para la Cooperación y el Desarrollo Económicos, & Organización Mundial del
Comercio. (2015). La ayuda para el comercio en síntesis 2015: Reducir los costos del
comercio
con
miras
a
un
crecimiento
inclusivo
y
sostenible.
https://doi.org/http://dx.doi.org/10.1787/ayuda_sintesis-2015-es
Pöyhönen, P. (1963). A Tentative Model for the Volume of Trade between Countries.
Weltwirtschaftliches Archiv, 16, 93-100. https://www.jstor.org/stable/40436776
Esta obra se comparte bajo la licencia Creative Common Atribución-No Comercial 4.0 International (CC BY-NC 4.0)
Revista de la Universidad Internacional del Ecuador. URL: https://www.uide.edu.ec/
230